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I RESEARCH OBJECTIVE 2

1 Research Objective

Research efforts supported by AFOSR Grant F49620-92-J-0014 have been a continuation of a
broader plan supported by previous AFOSR grants to develop a cohesive, complete theory for
the design of systems for precision control of uncertain, highly nonlinear systems including, but
not limited to, high performance military aircraft flight control, laser-based tracking and targeting
sensors, missile autopilots, and so forth. While such applications form the context of the research,
the focus has been on developing the mathematical concepts and theory needed to formulate,
analyze and solve such problems in an engineering setting.

2 Accomplishments

Fifty-four publications supported under AFOSR Grant F49620-92-J-0014 have either appeared,
been submitted or are currently pending publication [1]-[54]. Areas of significant progress repre-
sented by these AFOSR supported publications include the following:

e Linear System Theory [3, 4]

¢ Modeling Accuracy Needs in Identification for Control [24, 10]

e Model Reduction and Identification for Control[7, 9]

¢ Real Multivariable Stability Margin (MSM) Analysis [8, 5, 11, 10, 6, 24, 30, 52, 10, 11, 31, 40]
e Theory for Reliable Numerical Computation of H, Controllers (23, 4, 17, 27, 28, 28, 33, 34, 20]
e How to Use Ho, Control Theory in Design [2, 30, 25]

e Beyond H,, Control [26, 18, 52]

e Bilinear Matrix Inequality (BMI) control synthesis [29, 37, 38, 41, 44, 39]

¢ Unfalsified-Control/Set-Theoretic-Adaptor-Control Systems [20, 21, 36, 32, 40, 22, 54]

e H,, Aerospace Control Design [1, 2, 42]

Most of the theoretical developments embodied in the above listed recent AFOSR publications
have been, or will soon be, implemented in software. Other concepts developed with AFOSR
support played a central role in a supermaneuverable fighter aircraft control design study [1] —
and, evidently, in the Air Force Wright Laboratory follow-on study [65]. The generalized Popov
multiplier robustness analysis concepts developed in [53, 31, 19, 29, 40] have led directly to improved
approaches for the design of active vibration damping systems for flexible space structures [42].
The effective and rapid transition from theory to practice has been facilitated by my on-going non-
AFOSR-supported involvement with Dr. R. Y. Chiang in creating, and periodically upgrading,
the MATLAB RoBUST CONTROL TOOLBOX, a robust control design software product published by
The MathWorks and in use on more than 1000 government and industrial computer systems [64].
Further details of several of the most significant achievements are elaborated below.
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Model Reduction arnd Identification for Control

Multiplicative error bounds developed in [9] had important practical implication for generating
models suitable for use in H,, control design since robustness is assured if multiplicative model
error is less than one inside a control system’s bandwidth. Going beyond model reduction to the
identification of models from data; the Balanced Stochastic Truncation model reduction method
was developed into an engineering tool that can take raw autocorrelation data and generate a low
order linear time-invariant stochastic realization with a prespecified relative-error [7]. In view of
my earlier “robustness criterion” for modeling (which, loosely speaking, says simply that a relative-
error smaller than one means a model is adequate for control system design), the potential of this
system identification technique for use is robust control design is enormous. Unfortunately, when
the autocorrelation data comes from (possibly noisy) input-output measurements from a plant
to be controlled, the relative-error bound is not on the plant itself, but rather on a realization
of a phase-blind stochastic realization of the measurement data, so that additional work will be
required to turn this into a practical tool. The paper [7] includes some preliminary ideas which
may, with substantial improvement, lead me to the result which I seek — a method to compute
multiplicative-error bounded models directly from input-output autocorrelation data.

Singular H, and H,, Control

Significant progress in advancing H., control theory for “singular plants,” i.e., those with zeros
either on the jw-axis or at co. Such singular problems are actually far from rare. For example, the
classical H, sensitivity minimization problem introduced by Zames in 1981 results in an improper
control law having unobservable poles at w = co wher his Nevanlinna-Pick interpolation approach
is applied and the plant is strictly proper. In these situations the state-space H,, theory fails to
produce any solution at all. A different — but related — problem occurs when one attempts to
apply weighted mixed-sensitivity H., control synthesis to a plant with a pole at s = 0; e.g., a
system having proportional-integral feedback. Such situations are the bread and butter of control
engineers and cannot be realistically ignored. Preliminary results concerning a solution to these
previously unsolved singular H,, control problems are described my papers with Copeland and with
Goh [23, 4, 17, 27, 28, 28, 33, 34, 20]. As is shown in [27], these results can be further simplified
so as to permit faster, more reliable computation of H, control laws for singular plants. In the
coming months, I will examine the remaining problem of finding a representation of the subset of
proper, internally-stabilizing H, control laws for singular plants.

Real A,, Analysis and Synthesis

Using a variant on the Popov multiplier technique from nonlinear stability theory, combined with
the H,, synthesis theory via bilinear sector transform, I have developed the theoretical framework
to significantly reduce the conservativeness with which uncertain real parameters are handled [31,
19, 29]. Our results eliminate the difficult and awkward “curve fitting” step associated with previous
approaches to K,,-synthesis. They constitute a major theoretical breakthrough, making reliable,
fully-automated K,,-synthesis theoretically possible for the first time.

Bilinear Matrix Inequality (BMI) Synthesis

As shown in papers [37, 44, 14], a broad spectrum of robust control problems, including multimodel,
decentralized, and reduced-order p/ K ,,-synthesis problems, can be reformulated as Bilinear Matrix
Inequality (BMI) Feasibility Problems. The BMI is an extension of the Linear Matrix Inequality
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(LMI) approach that has recently been found to be useful in formulating and solving a limited class
of robust control problems, including state-feedback and full-order dynamical output feedback H
control, u/ K, analysis, simultaneous stabilization, gain-scheduling, and so forth (e.g., [66, 67, 68,
69, 70, 71, 72, 73, 74, 32]). In particular, the BMI formulation offers the advantage of simultaneously
handling all the foregoing types of specifications as well as additional specifications not amenable to
the LMI framework such as constraints on controller structure (e.g., decentralized “block-diagonal”
control) and on controller order. The BMI formulation also sheds new insight into the properties
and limitations of existing robust control algorithms such as the u/K,-synthesis, indicating that
the classical DK -iteration may not even produce locally optimal solutions.

Mathematically, the BMI is defined as follows:

Definition 2.1 (BMI Feasibility Problem) Given real Hermitian matrices F; ; = Fg; € R™X™,
fori € {1,...n5}, 7 € {1,...n,}. Define the matriz-valued bilinear function F : R" x R™ —

Rme .

nr Ny

F(z,y) 233 ey, Fj (2.0)

=1 j5=1

Find, if they ezist, real vectors x = [z1,...,2,]T € R™ and y = [y1,...,ys]T € R™ such that
F(z,y) is positive definite. This is called the bilinear matrix inequality feasibility problem.

The global solution of such BMI’s would resolve many of the major limitations the existing p/ K-
synthesis theory for robust control design.

For example, as shown in [37], BMI’s provide a natural formulation for the problem of optimal
reduced-order H, control synthesis introduced by [75, 76]. The BMI formulation seems to us
rather simpler than the nonlinearly coupled LMI’s proposed in {72, 73]. Unlike standard LMTI’s,
such nonlinearly coupled LMI’s have so far defied attempts to develop globally convergent solution
algorithms.

Likewise, while the controller structure constraints required in the synthesis of decentralized
controllers have so far defied attempts to embed them in the LMI framework, these constraints
are readily embedded within the BMI framework. Even more importantly, the BMI framework
naturally handles the u/K,,-synthesis with fixed-order generalized Popov multipliers [19, 29].

Recall that while each of the two problems of solving for an optimal Popov multiplier M (s) with
the controller K (s) fixed, and then solving for an optimal H,, controller X (s) with the multiplier
M (s) fixed, is convex, the p/K,, problem is not jointly convex in the multiplier and the controller.
The upshot is that no guarantees of convergence to globally optimal values of M (s) and K(s) are
possible. Indeed, solutions may not even be locally optimal. But, with the aid of the generalized
positive real lemma [77], we show in [37] that decentralized and reduced-order u/K,,-synthesis
control problems admit simple BMI formulations.

Our preliminary study [38] of the properties of the BMI feasibility problem indicates that is
possible to obtain local solutions which at least improve on existing alternating D-K synthesis
techniques. However, the problem in general requires globally optimal solutions. In this regard,
we find it encouraging that the global solution of a BMI has the simple interpretation that it is
equivalent to finding the diameter of a collection of origin-centered ellipsoids in RY [44]; i.e., it is
the diameter of a very simple, highly structured convex set. One of the chief goals of our future
research will be to develop reliable general purpose BMI solution algorithms which fully exploit the
underlying simplicity and structure of the BMI problem.
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Unfalsified Control Theory

Inspired by the “unfalsified model” concepts used in model validation (e.g., [78, 79, 80, 81, 82,
83, 84]), but disappointed by their relative complexity and inherent conservativeness when used
for control-oriented identification in conjunction with state-of-the-art robust control methods, a
more direct “unfalsified control” approach was introduced by us in [22, 41, 45, 13] — see also
[20, 21, 32, 36, 54].

Apparently new, our unfalsified control concept is a “model-free” approach to control. It works
directly with input-output measurement data with the only model required being that of a pa-
rameterized class of candidate control laws. The central idea in our unfalsified control approach
is that controller models can be “validated” against performance specifications directly from plant
input-data without any need to identify or validate models of the plant itself. Furthermore, the
computations required for direct “controller validation” are really no more difficult than those
required for plant model validation of the type in [80, 79, 82, 84, 83, 85].

Thus, instead of attempting to enforce a somewhat artificial separation between modeling and
control design, our unfalsified control concept dispenses with plant models and uncertainty models
altogether, focusing instead directly on the controller model and the implications of the available
plant data regarding its capability to meet performance specifications. It replaces the conventional
indirect two-step approach of (a) finding unfalsified plant models and (b) designing robust con-
trollers. Our concept takes one directly from plant input-output data to control designs without
the necessity of plant or uncertainty modeling. This is possible since all needed information about
the plant is already in the plant input-output data — and this information turns out to be sufficient
to validate control laws.

The essence of the unfalsified control concept is depicted abstractly in Figure 1. The three axes
represent the three (infinite dimensional) function spaces of which the signals r, y, u are members.
The three signals r,y, u are, respectively, commands r(t), plant output y(¢) and control signal
u(t). In this context, a plant is a collection of input-output signal pairs (u,y). A control design
specification is a constraint on the signal pairs (r,y) — ie., aset, say T, in which the pair (r,y)
must lie. A control law, say K, is a constraint on the triple (r,y,u), i.e., a subset of the set of
triples (r,y,u). In Figure 1 the plane K (u,y, r) = 0 represents a particular linear control law.
The key observation is that one may test consistency of the control law K (u,y,r) = 0 with the
specification T and the past plant data (u,y) by checking that the image of the pair (u,y) under
the constraint K (u,y,r) = 0 is a pair (r,y) in T. Moreover, this controller consistency test may
be performed even if the plant data (u,y) has been generated by another control law — or even
if is has been generated open-loop with no control law at all. A control law K which fails to be
consistent with the performance specification and the past plant input-output data is invalidated,
i.e., falsified; those control laws which are not falsified are said to be unfalsified.

This simple idea is our unfalsified control concept. But, simple though it may be, it is a
revolutionary concept. It makes no explicit use of plant models other than the data itself, so in this
sense it is a “model-free” approach to control. Because it requires no unverifiable assumptions and
works only with data and specifications, it provides a direct, nonconservative approach to control
design, as illustrated by the example in [45, 13]

Current research aims to turn the unfalsified control concept into a practical theory for robust
control design. The “ACC Benchmark” robust control design problem solved by us using unfalsified
control techniques in [22, 54] establishes not only the conceptual feasibility of the unfalsified control
approach, but also that it can actually lead to superior designs. Additionally, it appears that our
unfalsified control concept will lead to a more scientific basis for the study of adaptive control and

learning.
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Figure 1: Controller validation from plant data (u,y). A control law K is valid (i.e., unfalsified) if

the projection under K of the data point (u,y) onto the (r, y)-plane produces a point (r,y) in the
performance specification set T.
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We believe that this research has the potential to revolutionize the way theorists think about
control, providing a much clearer understanding of the fundamental nature of learning and adapta-
tion. On a higher plane, it would be our hope that the results will help us to begin the important
task of building a solid common foundation for robust, adaptive and intelligent systems — a founda-
tion sufficiently broad to be embraced not only by control theorists but by the artificial intelligence

community as well.

3 Conclusions

With support from AFOSR Grant F49620-92-J-0014, significant progress has been made in the-
ory for reliable computation of H,, controllers, model order reduction theory, and the theory of
identification of models to be used for robust control purposes, the promising new field of robust
BMI synthesis theory was brought into focus and a revolutionary new unfalsified control theory
was developed to aid in the understanding and design of adaptive/learning control systems. The
BMI theory and the unfalsified control theory are major conceptual breakthroughs.

The Bilinear Matriz Inequality (BMI) approach to real/complex K,,-synthesis was demon-
strated to offer enormously greater flexibility in formulating within a simple framework broad
classes of robust control problems involving nonlinearities, gain-scheduling, controller order con-
straints, decentralized control and more. The BMI problem formulation itself is a major conceptual
breakthrough because it distills the mathematical essence of robust control problems, embedding
them within the conceptually simple framework of bilinear matrix inequalities. Reliable albeit sub-
optimal algorithms for solving BMI’s were developed, thus establishing that the BMI is more than
just a superior conceptual framework since globally optimal BMI solutions can always be computed,
albeit not in polynomial time since the BMI problem is in general NP-hard.

The unfalsified control theory developed with AFOSR support gives sharp mathematical repre-.
sentation of the role of experimental data in identifying robust control laws and provides a practicai
technique for identifying robust controllers in real-time with little or no apriori information. The
theory paves the way for important links between robust and adaptive control and, perhaps, arti-
ficial intelligence. It is a conceptual breakthrough because it distills the mathematical essence of
control-oriented learning in a deterministic setting by focusing sharply on what is, and is not, know-
able and challenging the need for the largely gratuitous assumptions that have been the hallmark
of adaptive control theories.
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